Calculus 140, section 5.3 Special Properties of the Definite Integral

 7 tidbits about integrals you didn't know you needed to knownotes by Tim Pilachowski
Definition 5.6, part 1: "Let f be continuous on $[a, b]$. Then $\int_{a}^{a} f(x) d x=0$."
It's fairly obvious why this must be true.

$$
\int_{a}^{a} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{1} f\left(t_{k}\right) \Delta x_{k}=\lim _{\|P\| \rightarrow 0} f\left(t_{k}\right) * 0=0
$$

In geometric area terms, a line segment, which is infinitely thin, has a width, and therefore an area, equal to 0 . Among other things this means that the areas under a curve on the intervals $[a, b],[a, b),(a, b]$ and (a, b) are all mathematically equal.

Definition 5.6, part 2: "Let f be continuous on $[a, b]$. Then $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$."
We've already encountered a similar concept when we looked at distance and velocity: positive is up or forward, and negative is down or backward. The "integral from b to a " is the "integral from a to b " in reverse gear.
5.2 Example B revisited: Evaluate $\int_{2}^{2} 2 x d x$ and $\int_{5}^{2} 2 x d x$.

Theorem 5.7, Rectangle Property: "For any numbers a, b, and $c, \int_{a}^{b} c d x=c(b-a)$. ."
Proof:
5.2 Example A revisited: Evaluate $\int_{10}^{2} 5 d x$.

Theorem 5.8, Addition Property: "Let f be continuous on an interval containing a, b, and c. Then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

The text has put the highly-technical proof in the Appendix.
Example C: Given the piecewise continuous function $f(x)=\left\{\begin{array}{cc}2 x & x<3 \\ 5 & x \geq 3\end{array}\right.$, evaluate $\int_{0}^{6} f(x) d x$.
"Piecewise continuous" means the function is composed of continuous pieces.
(See the text for the detailed explanation.)

Theorem 5.9, Comparison Property: "Let f be continuous on $[a, b]$, and suppose $m \leq f(x) \leq M$ for all x in $[a, b]$. Then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$."
The value $m(b-a)$ is a lower bound for the integral; $M(b-a)$ is an upper bound for the integral. The text's proof, based on a Riemann sum, takes 5 lines of text and 3 lines of equations.
4.1 Example C revisited: Using the Comparison Property, find lower and upper bounds for $\int_{-1}^{4} \frac{x^{3}}{e^{x}} d x$.

Corollary 5.10: "Let f be nonnegative and continuous on $[a, b]$. Then $\int_{a}^{b} f(x) d x \geq 0$."
Proof:

Now we come to the $7^{\text {th }}$ and final tidbit of this section.
Theorem 5.11, Mean Value Theorem for Integrals: "Let f be continuous on $[a, b]$. Then there is a number c in $[a, b]$ such that $\int_{a}^{b} f(x) d x=f(c)(b-a)$. ."

Proof:

The value $\frac{\int_{b}^{a} f(x) d x}{b-a}=\frac{1}{b-a} \int_{b}^{a} f(x) d x$ is called the mean value or average value of f on $[a, b]$.
5.2 Example B once again: Find the mean value of $f(x)=2 x$ on $[2,5]$.

interpretation in calculus terms:
interpretation in geometric terms:

